So-net無料ブログ作成

双曲正接らせん Hyperbolic Tangent Spiral [見て楽しむ三角関数]

Scratch双曲正接らせんを描きます。

[双曲正接曲線]

曲線を描く処理の詳細は初回で説明していますので、そちらを参照してみてください。違う曲線ですが流れは同じです。

最初に変数です。tanhは三角関数の計算結果を保持するための変数です。「大きさ」と「k」はスライダー表示にして画面上で変更できるようにしています。

[変数]

次に本体です。角度を-450度から450度まで変化させながら計算、移動を繰り返すとこの曲線を描画できます。

[本体]

次に準備です。ペンの設定、変数の設定、開始座標の計算、開始座標への移動を行なっています。

[準備]

式はこうなっています。rは半径、aは倍率(大きさ)、θは角度です。
\[ r=a\tanh(k\theta) \] この式をプログラムにすると次のようになります。

[計算]

最初に\(\tanh(\theta)\)から半径を計算し、その結果からX座標とY座標を計算しています。\(\tanh\)は双曲正接関数で、今回はこのサイトにある定義を使っています。
\[ \tanh(\theta)=\frac{e^{\theta}-e^{-\theta}}{e^{\theta}+e^{-\theta}} \] \(e\) はネイピア数です。Scratchにはこの関数は備わっていないので、自分でブロックを定義します。

[Hyperbolic Tangent]

移動はいつも通りです。

[移動]

完成版はこちら
nice!(1)  コメント(0) 

nice! 1

コメント 0

コメントを書く

お名前:
URL:
コメント:
画像認証:
下の画像に表示されている文字を入力してください。

※ブログオーナーが承認したコメントのみ表示されます。